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I. INTRODUCTION

This report is the final report on Contract No. F44620-74-C-0057 to
study the application of ultrasonic elastic wave scattering to the detection,
identification and characterization of defects in solids. The contract was
initiated on February 1, 1974, and terminated on March 15, 1977. During the
three-year period it entailed approximately 1-1/2 man-years of effort of
which approximately one-third was experimental measurement and two-thirds
theoretical analysis. During the first two years the theoretical analysis
was compared with experimental measurements, but it became apparent that this
approach was not adequately providing a validation of the calculations since
any discrepancies could be ascribed to various experimental shortcomings such
as instrumental sensitivity and angular resolution, lack of monochromaticity
in the transducer pulses, variability in the physical parameters of the
titanium alloys, and attenuation and scattering of the ultrasonic signals by
metallurgical inhomogeneities (second phases). For this reason the effort of

the third year of the program was entirely analytic.
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IT. SUMMARY OF PROGRESS

The results of the first two years have been reported in two annual
reports [Cohen, 1975; Cohen, 1976] and an interim report [Cohen and Tittmann,
1975] and will only be summarized here. For details, the reader is referred
to the prior reports which must be considered as part of the full documenta-
tion of this contract. The theoretical results on the formulation of the

scattering of elastic waves will be reported here in some detail.

A. Scattering of Elastic Waves by Spherical Cavities and Inclusions

In order to verify the experimental techniques and to develop the necessary
theoretical basis, the initial task of this contract was the review of the

existing calculations of scattering by spheres [Cohen, 1975].

B. Scattering of Elastic Waves by Spherical Cavities

Spceimens of titanium alloy containing a spherical void of diameter

0.4 mm or 0.8 mm were prepared by diffusion bonding techniques. Experimental
data on the scattering of ultrasonic pulses by these cavities were compared
with the theoretical calculations. The data were in reasonable agreement with
theory. Discrepancies could be ascribed to the lack of monochromaticity of
the pulses at high frequencies, and to the scattering and attenuation of the

pulses by the metallurgical inhomogeneities in the titanium alloy [Cohen, 1975].

C. Scattering of Compressional and Shear Waves by a Spherical Inclusion

A tungsten carbide inclusion (commercially-available tungsten carbide
ball, nominal diameter, 1/32", 0.794 mm) was inserted into a diffusion-bonded
titanium alloy block. Measurements of compressional wave scattering were

carried out at nominal frequencies of 2.25, 5.0 and 10.0 MHz. The transducers
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used had low Q (approximately 5) and hence not adequately monochromatic.
Because of this, waveform synthesis was required. The 2.25 MHz transducer
showed a characteristic with a full width at half maximum of 0.8 MHz. The
5 MHz transducers had a peak output at 4.5 MHz with a full width at half ’
maximum of 1.9 MHz, and the 10 MHz transducers peaked at 7.4 MHz with a full
width at half maximum of 2.6 MHz.

Experiments with incident shear waves were carried out with high Q shear-

cut quartz plates bonded to the faces of the sample.

These experiments were in agreement with theoretical calculations »f the
cross sections except for the amplitude of cross-polarized (depolarized) shear
wave scattering at 5 MHz. The precise reasons for the anomalous appearance of
this depolarized amplitude (an obversed scattered shear wave polarized at
right angles to the scattering plane when the incident shear wave is parallel
to that plane, which is forbidden by symmetry for scattering by a sphere) is
not understood but has been ascribed to the bulk scattering by the metallurgical

second phase in the titanium alloy {[Cohen, 1976].

D. Reformulation of the Calculation of Scattering by Spheres

The analyses of Ying ana Truel [Ying and Truel, 1956] on the scattering of
compressional waves by spherical scatterers and of Einspruch, Witterholt and
Truel [Einspruch, et al., 1960] on the scattering of shear waves, were rederived
in a unified format which makes possible several useful extensions [Cohen and
Tittmann, 1976]:

a. Both scattering processes are expressed in terms of the same basic

""scattering matrix' which allows the amplitudes of the spherical
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harmonics of the scattered wave field to be expressed in terms of
those of the incident wave field.

b. This same matrix applies also to the scattering of any incident wave
field (not necessarily plane) and hence is in a convenient form to
permit the analysis of near-field scattering or the multiple
scattering of two spheres.

c. The reciprocity theorem for mode conversion scattering by a sphere:

2 2
K ct_)z(e) =k 2+t(6)

may be established directly from the symmetry of the '"scattering

matrix."

E. "Corrected" Born Approximation

The Born approximation is based on an integral equation formulation of
the scattering process (see Section III.D below). The total displacement field
is expressed as a sum of the imposed incident field plus an integral over the
volume of the scatterer which involves the displacement field in the scatterer
and the differences between the material constants of the scatterer and the
constants of the external host medium. The first Born approximation replaces
the displacement field in this integral by the incident displacement field.
The resultant expression for the scattering cross section is an adequate
approximation only when the properties of the scatterer differ slightly from

those of the host medium. A correction to this first order Born approximation

has been developed [Cohen, 1976] which yields the exact long-wavelength limit
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for the scattering cross sections for spherical scatterers for arbitrary varia-
tion of scatterer parameters. In particular, this corrected Born approximation
gives the correct foward scattering amplitude for a spherical cavity in the
Rayleigh limit.

A further extension of the Born approximation, which is developed in
Section IIL.E below, gives results which are exact in the Rayleigh limit for
scatterers of arbitrary shape (subject at most to the restriction of a smooth

boundary).

F. Variational Formulation

From a variational formulation of the cross section, a further extension
of the "corrected" Born approximation is possible. Thig includes the long-
wavelength extension mentioned in the previous paragraph for w > 0. The range
of its applicability as a function of w (or of ka, ka) may be partially
evaluated by comparison with the known exact solution for a sphere. Applica-
tion of this formulation to ellipsoids, in particular to ellipsoids of revolu-
tion, is underway. Further extensions which should increase the range of
applicability of this class of approximation are possible without significantly

increasing the complexity of the calculational algorithms. Details are given

in Section III.F.
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III. DETAILS OF THIRD YEAR'S RESULTS--GREEN'S FUNCTION,
RECIPROCITY AND THE BORN APPROXIMATION FOR THE
SCATTERING OF ELASTIC WAVES

A. Differential Equation and Green's Function

The displacement field u in an elastic medium satisfies the equation

o (r) = ( +f (1)

e
mSpj P»J1/,S m

where fm is the applied force field. In Eq. (1) the elasticity tensor

)
(o) .(r) may be a function of position. For an isotropic medium € . A8 }
mspj — mspJ 1
given by

c. ., =XxX6_&8  +ulé 8§ .+%486 .8 ) (2)

mpsj ms pj mp sj mj sp

and for any arbitrary medium Cmspj must satisfy at least the symmetry with

respect to interchange of indices expressed in Eq. (2); i.e.,

c y (o] o G 3 = C , .
mspj smpj msjp  pjms

For displacements which are harmonic in time with frequencv w Eq. (1)

becomes

(c u_ L) L+ owlu +f =0 . (3)
msSP] P,]',S m m

The Green's function for the system is defined as the displacement field pro-

n
duced by a delta function impressed force at the point T, and hence Gp(g;gﬂ)

is the solution of the equation
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n 2'n
2(r3 + sr ) + & 6(e-x ) = 4

(cmsijp,J(E’Eo)),s PG, (eix ) L R (4)
The Green's function can in principle be defined for an inhomogeneous aniso-
tropic system as the solution of Eq. (4), but it is useful for our purpose of
exploring the scattering of elastic waves to restrict the Green's function to
the solution of Eq. (4) for an infinite homogeneous isotropic medium, and

hence to consider only the Green's function which is the solution of

2. n
A+H1)GY s ) + uGo 5T ) + pw . =r J =
( A)Gp’pm(g,r ) qu’pp(g,r ) + w6 (x5r ) + 8 &(r-r ) =0 (5)
with the boundary condition
1im G (r;r ) = 0 (6)
m—’—o '

It is clear that the solution of Eqs. (5) and (6) possess translational

invariance and reciprocity:
= m =
Uge, D) = & Clz ~zly )

The Green's function can be explicitly written [Morse and Feshbach, 1953;

Gubernatis, et al., 1976]

-ikR 2 -ikR -ikR)
e 3 e e

1 2 : )
jm R axjaxm[ R R ;

)

63 (|r- =G, (R) =
m(lr rol) jm( ) FiTL
(8)

We now introduce the spherical Bessel function ho(z) and write
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2

1 3 5
5 [K 8y (R) + X {Kho(KR) " kho(kR)}] 9)

4ripw

G, R) =
n®
where € and k are the wave numbers for shear and compressional waves,

K = 0w2/u : 12 = owzlk+2u . (10)

and

h (2) = Ty i (2) - iy (2) . (11)

We shall also make use of the Bessel function relationships

(2n+1)

hn_l(z) + hn+1(z) = ——7;——-hn(z) (12)
: N7 2 2
and, with R™ = x1 + X, e Xq5
3 hn(kR) . hn+l(kR)
dx e A nt+l (13)
;. 3R
Using these expressions, we may write Eq. (9) in the form
1 3 3
G, (R) = 5, {2,< h (R) + Koh ()
jm 12mipw? { JuLs e -
3xjix
- m_ . f .3 B Q]
( R2 ij) kK h2(<R) k hz(kR)U (14)
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The symmetry and reciprocity relationships of Eq. (7) are immediately
evident in the explicit form of Eq. (8) or Eq. (14); however, a much more
general reciprocity expression may be developed directly from Eq. (4) for
the general case [Knopoff and Gangi, 1959; Cohen, 1976]. We. rewrite Eq. (4)

with a slightly different notation
( (Eix )) + pwzuv(r°r )+ 8 S8(r-r.) =0 (15.1)
mspj' p,J m =’ =1 oy T X
where u;(g;gl) is the displacement ar r resulting from a unit force in the

v-direction at I and

(rsr

2 H . —
(cmspj Pol ——2)) + ow um(E’_r..z) + smua(.’_:."lz) =0 . (I5.2)

If (15.1) is multiplied by ui(g;gz) and (15.2) is multiplied by u’ (rir,) and

the two expressions subtracted, one obtains

_/V' [(cmspJ b, (EiE l)) u (r;g_z) = {e S J<_,_2>) u (z;gl)} dv

- - e
—uu(gz,gl) “v(£1’5-2)

u - \) . - u . \) . -|-
= ,/S.Cmspj(E)[Um(E'EZ)up,j(E’Ll) up,j(g,gz)um(g,gl)J d§S

V M V u
+ chspj(g){um’s(z,zl)up’j(5,3 W e )y

2) Pled ===l tys 2
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Now, from the symmetry of the elastic coefficients the final integral vanishes.
If the region of integration extends to infinity the surface integral vanishes
since the elastic displacements vanish (at least as fast as 1/R) as ]Efgil

and Igfg go to infinity. 1If the region is finite we assume the usual homo-

5
geneous boundary conditions such that either the displacement, um(r), or the

normal stresses, TIn =T (r)ns, vanish on the free surface.”™

n Cc .u .
ms s mpsj P,]

In either case, one then obtains
o = N drs
w, (£y55)) = u,(x; L)) . L

Note that whereas the reciprocity of Eq. (8) applies only to an infinite iso-

tropic homogeneous medium, the reciprocity of Eq. (17) is completely general.

B. The Integral Formulation of Scattering

The simple solution of Eq. (14) applies to an infinite homogeneous,
isotropic medium. Although such a solution has only a limited idealized appli-
cation per se, it can be used as the basis for an important extension of the
analytic description of wave propagation in inhomogeneous elastic media. We
assume that the medium of interest is isotropic and homogeneous for R = <o,
but that in the vicinity of the origin there is an inhomogeneity which is the

cause of scattering of elastic waves. We denote the "unperturbed" region by

*The more general condition, that everywhere on the boundary we have

au_ + Srmsns = 0, in which @ and B8 are arbitrary (but fixed) scalar parameters
which may depend on position or on the component m, also leads to the vanishing
of the surface integral point by point. The condition may even be further
generalized to the extent that & or 8 may be taken to be symmetric matrices,

although such generalization is probably physically artificial, except for the
the case where o and B are diagonal.

10
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the density po and elastic constants c® and write
o(x) = p° + Ao (x) (18.1)
(r) = c° + Ac (18.2)
‘mspj = ~ ‘mspj = mspj ;

The equation for the displacement field in the absence of applied forces

is

2
(Cmspjup,jls +towu () =0 . (19)

This is then written in the form

o

o2
(o mspjup,js(s) +pow um(z) + (A

Cmspjup,j),s + Aowzum(g) =0 . (20
When Eq. (20) is compared with Eq. (3), it is clear that the last two terms
play the role of an impressed force on the medium (albeit one whose magnitude
at each point is dependent upon the displacement field at that point). If
Cmspj is given by Eq. (2) we can wrice a formal solution in terms of the
Green's function for the homogeneous isotropic medium. We are interested in
describing the waves scattered by the inhomogeneity; we therefore express

um(g) as the sum of the incident field u;(s), which is the wave field in the

infinite homogeneous medium, and which satisfies the equation

o o
c L S
mspj P,J]S

@ + %@ =0 (21)
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and a scattered wave, ués)(g) generated by the inhomogeneity,

um(g) = U;(E) + ués)(z) (22.1)

W@ - [ (s, (D, (@) |+ sohu’u, (@ ]ar

- f G, (x-1) [(Acvsp §@u (@)

+ uPbo(Hu, (ﬁ)]dg' (22.2)

The integral in Eq. (22.2) in principle extends over all space but since

Acvspj(Eb and Ap(xr) are such that they vanish as ]r'l"">° the integral in

actuality is limited to a finite region of space. The scattering cross sec-

tion, by definition, is evaluated in the far field (i.e., at a position which
is far removed from the inhomogeneity which is scattering the elastic waves).
In defining the scattering cross section one therefore needs the asymptotic

behavior of the Bessel functions. These are

ie—iz
ho(x) e L23.1)
ie-iz” 27
hz(x) = 3 13 + 34z - z i3.2)
. L J
and hence, from Eq. (14)
1 **n) 2 -ikr . *i%n .2 -ikR-‘ ~ 11
G m(R) P T é’m -=3-]Ke + —17~ k e ! - »»(—E) (24)
3 4Tow R J R R o R

12
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and therefore with, r = rQ,

o o 3 Blagy = 2 [KZ(CS - 8.0 Yo 0, lws)

m — m - r jm jim D

+n.g o Yy (kﬂ)] i o(iz) (25)
im s Bty -

or

E(S)(E) - %[kzg'g(kg_)ﬂe—ikr & KZQXQ(KQ)XQ_e_lKr] + O(Lz) (25.1)

r
and
i 1 fiQQ'E, ’ ’
UJ‘ (@ = lnrpwz © {(chspn(z)up,n(z)),s
2 ’ ) '
+w Ao(g)uj (g)}dg

where q may be either « or k. Then set g = q@ and write

U, (g) = — f wao (D, () - iqbe_,  (Du <r’>} laryy (26)

B i i+ KA =
TOW
The strain field uj g can most easily be written in terms of the dilatation,
- " " - l = l F

e us,s’ and the '"deviatrix, Ejs =3 (uj,s + us,j) 3 g;js’ which

represents a pure shear; then

13

e —————_
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c u = ¢ E + 1 e . € (27.1)
sjpn p,n sjpnpn 3 “sjpp
which, for an isotropic medium, becomes
¢ . u _ = NE , + (x + 2 u)ss (27.2)
sjpn p,n s] 3 s]
and A + % U = K is the bulk modulus.

Equations (25) and (26) therefore give the scattering from a defect or
inhomogeneity in an infinite homogeneous isotropic medium in terms of the
displacement and strain fields within the inhomogeneity. To find uj(é) and

p, (r) however, it is necessary to obtain the solution of the "internal"
field defined by Eq. (22). Equation (22.2) is first integrated by parts to

give

e (0) 2 f = i 1 [ !
um(g) =u (r) tw ij (r L)Ao(g)uj (r)dr

wh—a

+mej,s(£‘£') { j pn(g)Epn(g) A (r)e(r)} (28)

C. Scattering Reciprocity

Equation (17) defines a reciprocity relationship between the displacement

field at point 51 produced by an impressed force at r, and the displacement

2
field at I, produced by an impressed force ar ;- It is also counvenient to
have a reciprocity condition which applies directly to the scattering cross

section and the scattering vector defined in Eq. (25).

14
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We consider a scattering region near the origin of a coordinate system

and two points r

i, rlgl and r, = rZQ We assume that r. and r, are both

=2" 1 2
large compared to the dimensions of the scattering region and with respect

to the wavelengths of shear and compressional waves in the medium (Fig. 1).

We describe the reciprocity statement of Eq. (17) to be composed of two
components-—the direct propagation of the wave field from point 1 to point 2

and a wave field scattered to point 2 by the scattering region. Then we can

write
Wi sr) = 6 (r,-r, ) + o) (29.1)
u—2’=1 TS =21 o =2
where ués) is the displacement field at I, which exists because of the
presence of the scatterer. Without any loss of generality, one can describe
L ()

y (52) as the result of a scattering of an incident wave by the scatterer,

(s) g (.o
w () = Go(rl)wu(_r_z, Q ,rl) (29.2)

where we have introduced the minus sign to indicate that the incident wave

is moving in the —Q(l)

direction. Similarly
M. . - oM . u Ff_ K2}
uy (Zy55y) G\)(l£1 52,) ® Go(rz)wx)(}'.l"‘?: ,rz) (30)

In writing Eqs. (29) and (30), we have done no more than define new quantities

ol . _a(l) ) o( 0(2) )
WU(EZ’ Q ,rl and Wv 51, Q ,r2 . We are interested, however, in the

limiting case r, = %o, r, > % and in this limit wﬁ(; ;-Q(l),r1> will be inde-

& 2
pendent of the magnitude of 5 and similarly WS(El;-Q(Z),r2> will be independent

13
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of r Since Eq. (17) is valid for an arbitrary inhomogeneous elastic medium,

9"
it is also valid for the specialization to a localized inhomogeneity. Further-

more, the Green's function for the infinite homogeneous, isotropic medium is

symmetric so that we have
v gl . o) - M (2)
61 (2 W) (252 T,) = G, O(z-2 ) (31)

In the limit as r, and r., become large, Eq. (31) leads to

1 2

r

2 (1) (1)) I SOINCO I o (1)
rz[l( (5\)0-9\) 2 )e +k$'2 o} ]w( -Q 1)

Iyt

—iKr
& i 1 - a@q(2) (2)q (7) sf _ {2)
= rl{% (6u55 Qu Qs )e + k Q }wv(Ll’ Q ,rz)

(32)

Now wi(;z;fg(l)> and Wi(zi;—gﬁz),rz) can be decomposed into longitudinal and

transverse components. Ar large distances Wz(gz;—gﬁl),rl) must behave as

lim O(r ;—Q(l),r )
T ot B 1
1’ 2

- ;1; {KZ(%S = 952)98(2))112(&(2),t;—Q(l))e-iKrz

-ik
g Q<z) @By (g® 4;-9D) . fz} (33)

16
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(where we have introduced the additional descriptor 2 or t to emphasize the

longitudinal or tramnsverse components of the vector g?), with a similar

@

expression, of course, for Wv rl, ,r2 . Equation (32) can then be

decomposed into the form

-ik (r +r2)

(o, - Qél)gél>){K2(5us s Qsz)géz))uz(g<z)’t;_g<1>’t)

=dr —ikr
+ 12 @@ (@® ;9D e T 1 2}
W s Ts\=— =

~ikr -ikr
+ lgWe@f2(s - o@@)(a® ;oM g)e L 2
v o us e s s\= =
-ik(r,+r,)
EE 9(2)9(2) S( St e EE }
o B TN VI TR N (S ) S i
ey (éuss W Uy ){K (6\)0 LYt )UU(Q £ ’t)e
¢ 2a®a®(of g 0,09 ¢)e Sy
ag
-ikr,-ikr
PO SR g )
2 CE b CYBaREY . o) o) THEE
+ kel (2™ 25-0 ,L)e . (34)

From this we obtain the fundamental scattering reciprocity relations
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(2@, e5-0 c) = Uz(gu)’t;_g(z)’t) o
(2@ ,05-2D p) - 022 ® ,25-2@ 1) .
?(a®, 60,9 - 2@ 00 ¢ P

or simply,
2(a®;-a®) - U;(ch);_g(n) o

(The fourth expression which can be obtained from Eq. f34) is equivalent to
Eq. (35.3) with s and 0 and (1) and (2) interchanged.)

The scattering amplitudes Wﬁ defined in Egs. (29) and (30) and their
decomposition into longitudinal and transverse components UZ defined in Eq.
(33) refer specifically to the scattering associated with an incident field
of unit amplitude. The incident wave will then carry an energy flux per
unit area given by

i
Q™ = pudsql® (36.1)

where qin is the propagation number (either k or k) of the incident wave.

The scattered energy flux per unit area normal to the direction n is given

by

18
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LS x . %
Qn = = eonjuj = wImOnjuj
= wlm [(A + 2 ]J)E*u + ZuE* u ] (36.2)
3 n nj j i
In the far field we use Eq. (25) and obtain
ik3 ikr 1
- (O 5 o=
€ e Qp p(kQ)e + (rz) (37.1)
and
2, = -2 [K3(Q 8, & Q& .~ 200030 (e
nj r njs j ns nj's’ s ="
rao(ae, - 16 Jou (m)e'ikr} +0 (-17) (37.2)
i 3 mt ss = .

The scattering cross section is defined as the far field scattered energy
flux per unit solid angle divided by the incident plane wave energy flux per

unit area

P RO
S) = EI;- ii: r QnQn

in 2 2
= S—Er lim r Im[(l + 3 u)E*Q u + 2uf E*,u,}
o m m m mj j

2 3 % ]
+ « (Gms - QmQS)ReUm(KQ)US(KQ)

R 5 A
= q [k QU (k2)

in{ 3 - JPE 2 3 2 :
=q U‘ mmum(kg)] + kKU | T -« Iszmumo@} ] (38)
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which may be written
5@ = q™ [k319-g<kg>!2 + Slawew|?] (38.1)

It is clear from Eq. (38) that the vector U(g) contains all of the

information in the displacement field u at large distances from the scattering

center and contains it in a form which separates the purely geometrical aspects

of the scattering from the properties of the scatterer.
It is useful to further decompose the scattering cross section into the

shear and compressional wave scattering. We then write

£ SQ+2(QSC;Qin) = k4{ﬂ;c9énUmc(kQSC;-inn)|2 (39.1)
Spae @58 = W[ (6 - 2550590l (c0®%; kg™ |2 (39.2)
5p0g @ %:0™™ = 0506 - Q\i)“szén)umv(kgsc;-@i“) |2 (39.3)
St @SC;Qm) P KAI S e = QrsuCQ:C) Oy - Q\i)nQ;n)Us\) (kg_sc;_KQin)}Z

(39.4)

and we obtain the reciprocity theorems for scattering

Bl e diciad &
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g e s 40.
Sgg ©)3785) = Sgp (8,58 a2
Tl . 40.2
Sear @378y = 5p, @58y i
B8, (050.) = 78, (9. 3-0.) (40.3)
>t =17 =2 t>2 =2’ —1

D. The Born Approximation

The scattering cross section may bé calculated from Eqs. (22), (26) and
(38.1). The Born approximation in its simplest form assumes that the scattered
wave, ués)(g) may be neglected in (26) and that um(g) may be approximated by
the incident wave u;(g). We now write the incident plane wave as

in
o e Siiqeecin (41..1)
up (£) b e

with the understanding that one characterizes the longitudinal and transverse

waves by the relationships

in_in 2 in
=

longitudinal: e - k ¥ bmq & =k 5 bmbm =1 (41.2)
o 2 i »
transverse: b S " B 3 bmqm =0 : bmbm =1 (&l 3)

The scattering amplitudes in the Born approximation are therefore given by

the following expressions [Cohen, 1976; Gubernatis, et al., 1976], when the

scattering inhomogeneity is restricted to be isotropic:




(a)

(b)
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Incident Longitudinal Wave
fO 2 i
UJL-HZ = F cosf - )\+2“ l:f 4= 2f (cos 8 - 3-)] (42.1)
£ £
i _k B
U2,->t o sinf e sin2§ (42.2)
where © is the angle of scattering, cosf = Q:ij;:’C,
£, = Zl?pr(Qel&Edz ; k=g -4q" (43.1)
£(K) = —1—f [ax(e) + 2 duce)] B Ear (43.2)
d% “hwd LT T 3TN L
it ik
fu(g) - fAu(E)e dr (43.3)

Hence, these functions are the Fourier transforms of the perturbation

of the density and elastic constants in the scatterer.

Incident Transverse Wave (Plane Polarized)

fo k fu
Uc-»i?, = cosd T sind - e T sin26 (44.1)
fp fu
Ut_ﬂzil = cos¢ Y cosf - s cos29 (44.2)
5]
Ut-’tl = -sing 5 u cos9 (44.3)
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where ¢ is the angle between the plane of polarization and the

scattering plane, and U U are the scattering components

t‘*t“ : )

parallel and perpendicular, respectively, to the scattering plane.

(¢) Incident Transverse Wave (Circular Polarization)

f f
L1 —dvgl D Sule i ]
U 5 € [p sinf T sin26 . (45.1)

t =L
T

. £ '3
U = __e—1r¢ ﬁcose + rs) 25 - (cos29 + rscos4) TFJ (45.2)

o

¥
(nd
N

N

-ird fo ;
e (eosbl '+ rg)| — = (2cos8 - r5) T%
Q

-

where r = £1 gives the polarization of the incident wave and s = %1
that of the scattered wave. We note that for forward scattering
there is no depolarization (s = r, only) while for backward scattering

there is total depolarization (s = -r, only).

To extract the scattering cross section from the scattering amplitude

one has
i Z
S = ¢ "¢°%|¢°v] (46)

E. Improved Born Approximation

The expressions given in the previous section are valid only for a
limited range of parameters. In general, one must restrict their use to

cases not only for which xa is small (where a is a characteristic dimension
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of the inhomogeneity) but also for which the magnitude of the perturbation,
IAO(E)/ID, IAC(E)/Cl is also small. This latter constraint is the more
serious one since it means that the Born approximation is inapplicable to
most problems of interest to NDE, where the most common scattering center
is a void, for which Ap = -p. The Born approximation, in replacing um(z)
by u;(g) assumes that the integrals in Eq. (28) may be neglected. This is
an acceptable approximation for um(g) but it is not gcceptable for dts

derivative or for Emj(g). To see this we note that u s(5) will involve
b

ij ps(E) which, as may be seen directly from Eq. (5), must contain delta-
functions.
Specifically, we find, as extensions of Eq. (14)
1, 5 (o) (o) }
: G, (R) =———— |k h (kR)6, - 6. R) + x, R 47
1 a® [Pn s, - 8,017 @) + xyx 02 @ )
1
where
(1 PR 8 [ n+p+l _ ntptl }
¢ (R —R" S hn(KR) k hn(kR) (48)
From Eqs. (12) and (13) one finds
DY gy o 1 [Z(p) (p+2) ]
s (R) = bl |} ®n+1(R) +o.0 (R) (49.1)
- o _1va D) _ A (p+2) }
R2 [(Zn l)¢n (R) ¢n-2 (R) (49.2)
(p)
36 " (R)
= D) . v 0P (50)
B2 4, ¢B) = ~x 01
s
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and
1 < (o)
- - — h, (kR)x 6. + S +x68, +x86, R
Gjm,s(R) 41\'10&»2 R l(K )% o (xJ o T B0 TR Jm)¢2 (R)
Y (o)
xjxmxsqb3 (R) (51.3)
1 »<4 5
G. = — h, (kR)§ S (kR)x x |38
jm,sp Mipwz »R il sp R2 2 *s pl jm
(o) (o) (o)
Jmpssz (R) = Jmspd>s (R) + x, xmx b o (R)

5(R) - o T
3 o 15 < -k e 5 * "aen

1 5 X™ 5
= —=— |«"h_(R)S, §_ + (3 —SER- 8 )5. k"h, (<R)
127iow i i =p e A

_ 10 Aln7s™p { ,(2)
jmsp RZ 2
‘ jmsp **m's'p ) (4)
R R
&[L 2 aiy, -12;;} .
* 2 LIS e = )L‘jmsp e ijhsp (51.2)
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where the delta function is defined such that

The Ajmsp and ijsp are totally symmetric expressions, [Cohen, 1976]

. = 4, + 8§, 52.1
jmsp Jmésp GJsamp i Gjpssm ( )
X, =xxd§ +xxd +x.x§ +xxbd +xxd +xxb.
Jjmsp J m Ssp s pjm J s mp mp Js J p ms m s Jp
(522}
with the properties
A, = A, = 58, - A =15 (52.3)
jm jmss jm ss
2 2
i ® X = R6, + 7x.x ’ X = 10R (52.4)
jm jmss jm i'm ss

Therefore, the first curly braces in Eq. (51.2) vanishes if contracted.

Since it may be verified that, for R > 0,

2 2
(®) E =5 i
¢n \R) = 2n-1 B
R
p P
R e &
R2n+l
-2 -3
it is seen that G (R) ~R and G )
jm,s jm,sp
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Equation (28) may be differentiated to obtain
2 '
a2 = u;c:;(}'_) +w f ij’p(g—gl)Ap(g‘)uj (rhdr
+fmJ o 2 r'){A}\(r')G e(r) + zAu(r')ejs(g‘)}dg . (52)

We define symmetrized functions

L _ = 1 ]
Gj;mP(R) Gmp;j(R) 2 [ij,p(R) # Gpj,m(R)

]

4
il
——— |- 5z h, (kR)(x 8§ . + x 8§ )
2
[mipwz l: R 1 p mj m pj

+ 8, + xSy + xS, )¢(°)(R) : xjxmxpd)go)(R)J

j mp m jp 2
(53)
and, with the delta-function component omitted,
g (R) = = |:G ®) + G (R)
mp;js 2 L'mp;j,s P;S,]
1 Ka
= ———-—-' 2 e ﬁ h (KR) (éps Jm + OijmS)
4mipw
KS
s =5 hz(KR)(é, xx +6, xx +#8 xx +6 xx.)
4R jmp’s jpP’m's ms i p ps m j
(o) (o) (o) -' ;
jmsp¢ (R) ijsp¢3 (R) + xjxmxsxp¢>4 (R)-JI (54)
27
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We now introduce an operator notation which can be defined in an obvious

way by

. = 2 » '
&’mjuj Zw mej (e £')Ao(_1;')uj (hdr (55.1)

v

© = 2 (= ) y
“mp;3%y T “’fcmp;j(s-z')Ap(g‘)uj () dr' | SN

“up;3s%ys Ef mp3ng TDAC, S(£'>€js(£3d£' (55.4)

Z‘J’m;jssjs Ef " pn(r- r)Ac o s(E')Ejs(E')dE' (55.2) ‘
i

Then Eqs. (28) and (52) lead to

o
o =y + @ + @ ] Gl

+ @ .
e:mp(_r_) mp(5) mp;juj Gup;1sSis

1 2 2 L el 2 }

(56.2)
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where the final term in Eq. (56.2) arises from the delta function in Eq. (51).

Introducing the shorthand notation ¥ = %

+ G :
mp - “mp;i¥; T Ymp;jstys Tor the

integral terms in Eq. (56.2) gives, formally, an algebriac matrix equation to
be solved for € (r). However, in the case where Ac__. 1is isotropic this

mp — mpJjs
system can be diagonalized. In the isotropic case, which is the only one we

shall explore in detail from this point on, Eq. (56.2) is

=g x
B W= LT

[SKZAA(E)e(E)Gmp ~ B = kz)Au(E)e(g)(Smp
2, .2
+ 2032 + 2k )Au(;_)&:mp(g)] (57)

Evaluating the dilatation and deviatrix of this expression gives

AN(T) + % Au (r)

) = S@F + B, - alilelt) ¢ ale) = 5o (58.1)
Ep@ = E:p(z) o —% Gsmp " PR E)
b(r) = SB 4o (58.2)
and hence
By e [e;’lpm + g +5am(°m + :ess)ém]
a(r) = b—f—ri—;Tj)(—rl (59)
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The integral equation (59) is not yet in a convenient form for a Neumann
expansion since g?mp still involves integrals which do not vanish in the limit
as the characteristic dimension of the scatter goes to zero, although for the

special case of a sphere (because of its symmetry) those integrals vanish.

In that one case, then, using Emp = (1+b)_1(€2p(£) e % aeo(E)Gmp) in Eq. (26)
gives the "corrected" Born approximation [Cohen, 1976; Mal and Knopoff, 1976].

In order to evaluate the complete first order approximation to the strain
field inside the scatterer it is necessary to evaluate the lowest order
contributions of the integrals fgmp’ and hence, equivalently, the long-wavelength
limit (static) Green's function. If we assume the long-wavelength limit, then
um(g) will be a slowly varying function of position within the scatterer and
we may use a mean-value theorem to remove um(g) from the integrals. Further-
more, we may use Eshe}by's result that Emp is constant inside a homogeneous |
ellipsoid in the static limit and remove it from the integral in that case
without resort to any approximation. Then, keeping only those terms which
can contribute in lowest order, we may write Eqs. (58.1) and (58.2) in a con-

venient symmetric form:

2
(1+a)e(r) = €°(x) + (AA - Au)ge () + 2bug, E, (D) (60.1) |

() (60.2)

o ( = )
(1+6)E  (r) = Ep (2) + (ax + 5 bu)e  €() + 20ug E, (2

where the integrals are defined by
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’ =fapp'jj(£'£')d5’ (61.1)
2 o oy ' _l_
Zmp fcmp;jj(£ 0 - 38 (61.2)
- ’
Bup;is fcmp;js(E"E')dE 3 (61.3)

We note that it is possible to write gjs in Eq. (60.1) as the same functional

expression as gmp in Eq. (60.2) because of the fact that E a has zero trace.

3

. 4 [
Therefore, adding the term 3 Sjscpp;nn(EfE)Ejs(E) in Eq. (58.1) adds nothing,

but allows the symmetric structure of the equations. In fact, since

= 2 2_. -1ikR : . .

Gpp'nn(R) = —(k"/4mpw R)e is a lower order singularity, its contribution
b

to gjs is Cszaz) and hence vanishes to second order. One must be cautious

here; Gpp'nn(R) still contains a delta function, -8(R)/(X+2u), which is, of

bl
course, not a lower order singularity and cannot be neglected.

The integrals must now be evaluated in the long-wavelength limit.

Expanding the Bessel function gives us

3x.x Z 2
G, = —t-— %(2K2+k2)5 +<-—J—,“‘-5_ )———'< =X .
im 4mpw R jm R” Jm i
1 2 X X 2 b < 7]
= Kle, +LB)+ s, - LB) o+, (62.1)
8mow R - N
i
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or, in the long-wavelength limit,
1
X, X
o = -——_l_.—_ . m
Cim = SmLO*ZIDR [(“3“)53-11, + ela) J—RZ J : (62.2)
A i § 2 X-XS 2 x,xsxm
G.S.m(R)=————-2—§n<xm6.S—3—l—-2 + k 3—-]--———~2 - %6 -x06 .-x 6,S+...
s 8mow R j R 8 jms smi mj
(63.1)
60 Ee AL u(S, x + & x.) + (A +p) 3 )_(Jis_ 8 (63.2)
iq . o A > X e 3 ”
isim - groezr3 | Jms smj m\® g2 js
and
= I 2| 3 30xmxox.xs
Gmp'js(R) - =ik 285, ——z—(xxé,s+x.x6 + X 's) .;.______Z_J__
’ 16Tpw R [~ mpJs R mpJ j s mp pJ R
2| X pig 19X X X.X
oy ~zumBls . _mpial, (4. 1)
| mpjs 2 A
R R
e - = 3\ 30 (A+u)
G [ | e S Pt SRy ZUA . S a— X , = Ssa—eeSe W X XX
mP33S g emu (2R [ mpjs = .2 “mpis 2 np s

A ‘ X,Xs : A xmx ; )
L +2u)(6mp 3 ~§?—-- 856/ \3 —;52 o= 6js\
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In these expressions only the lowest order terms have been retained; the
Green's function is, to this order, the Green's function for the elastostatic
problem [Eshelby, 1961; Love, 1934].

We now use thé divergence theorem to convert these integrals into surface
integrals and evaluate them at the center of the ellipsoid. This transforma-
tion, however, recaptures the effect of the delta function in Gmp;js and it |
will therefore be necessary to consider a small sphere which excludes the
origin as part of the surface of integration or #o appropriately modify the

equation in order to avoid including this contribution twice. We shall choose

the latter approach and merely insert the modifications later. Then

hEd l =0 2 =0 ’ ‘ ’
mps s 2./‘[ Cups 3 DM ¥ Cpp;s (Dmy 1S *

-1
T + :
16mu (A+2u) u(Gjmxpns GijmnS 4 dpsxmnj * 6mskpnj)
3x x dsl
+ M) x +nx)| —22-3 2, (65)
i's s R2 mp R3

For an ellipsoid defined by

Xy = alsinecos¢
2 2 2 2 & 2 2, 2
= i = - - i a
X, azsin681n¢ ; R a, + (al a, + (a2 al)51n @)sin s (66)
Xy = a3c056
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the normal surface vectors are given by
a,a,a
n.ds = =2 x sinddédd (67)
3 o
J

and gmp'js can be expressed in terms of two classes of integrals
’

1/3 ;
£ (ala2a3) xmxp51n6d6d¢
g A (68.1)
mp 4 R3
(a a.a )1/3 X X X.X sin®d6do
K = 15203 meJS (68.2)
mpjs 4m 5 -

R

From symmetry we find immediately that Jmp is diagonal and that there are

only six independent non-zero components for Kmpjs' Using six-vector notation

with mp > &, js > B we see that Kmpjs may be written

1 6 5
K6 Kz K4 0
K K K
K ., =K,_,= 3 5 3 (69)
mpjs aB K 0 0
4
0 0 Ks 0
0 0 K6

and therefore
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(a a.a )2/3 -
2123 load 3. - 3K ) L
8mp;js  4u(M+21) ‘:( B e mpjs ajg az

3 J 3 X
= PS_, s  -BE 45 B, BRI
uﬁjm

a a Pi amaS ps amaj ms apaj
(70.1)
where
2/3
a,a.a
(212533) r
e +
8ap uOFay LA ”Bae]
3K1--Jll 3K5—J22 3K5-J33
x 2 az
a2 az 3
Fein Bl By 0
2 az a2
a, 9 5
o T 1 e Wy S
Z az 2
a; 2 ay
A =
i 3K, (a2+a’)
Gl ey 0
0
2a2a2
2°3
3K (a2+az)
' 5 3
0 0 8
2 2a2
"%
o @
3K (aj+ar)
0 0 ik 2
) 22
' o 5
{70.2)
and
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2 0 0
Tafey
2
J22/a2 0 0
2
0 0 J33/a3
2 2
J112333% 5 -
4a2a2
255
BGB : J 2+J .
% g Nl
0 0 —_— == = 0
loaza2
=3
2 2
J11221903;
0 0
4a2a2
12
(70.3)
Among the nine integrals there are three immediate relationships
Jll = Kl + K6 + K5
J =K+ K. K (71..1)

22 6 2 4

o
[
~
+
~
+
~

33 5 4 3

Since it is also clear from Eas. (61.3) and (64.2) that AaB is a symmetric

matrix, the asymmetric form of Eq. (70.2) must be illusory and it can indeed be

verified that

2 2 2 2
3(ay - ay)K, = ayJy4 = a3y,

L N SR 5
3(a3 - al)K5 = a3Jll 31J33 Cida2)

2 2 2 2
3(a) = a))Ky = a;Jy, = aydyy
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so that the six Kj may all be expressed in terms of the three J's.

One also finds

’

g _ Sg i e f(xn *un) s
mp mp;jj 8T (A+21) m p pm R3
2/3
s (212233) e or2)
A+2u amap mp 3| mp

where the second term in the bracket comes from subtracting out the delta

function in G ... We may then write Eq. (60) as*
mp;Jjj

(<]
|

= o o =
Ea/(l 4Augaa) o = 4,5,6 (73.1)

o}
]

2/3
0 1 Sty 1 )
1~ Ep + 24 1(311 - 81308 (815 - 213)E) - 55y 2 173 E*

=1
[}

2/3
p A 1 ala3 1 '
2 Ez + 2 ul(glz = 323)E1 2 (gzz - g23)E2 I }\+2u aZ JZZ = 3 E‘
2

(73:3)

*
It should be remembered that in 6-vector space a scalar product is defined

by A-B = A B. + A, B, + A.B, + Z(AGB e ASB + A_B ) in order to account for
the symmetrizZation of thé Subscripts 1ij ana ji into a single component.
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J ) J aJ
33 22 33
(1+a)e = €o - AKce {('—;—1- - ‘—2—) El + (—2— - —2——) EZ] (73.4)
Ay By By
= 2/3 N 2
where ¢ = (alaza3) /(M+2u) and AK = AX +-§ Au, and use has been made

explicitly of the trace condition

E, +E, +E; =0 . (74)
F spherical tterer =a, =a_, =a and J = J =.J = =
or a spherical scatterer, a; 2 3 11 99 33 3
= - P = pa oy ;
Kl = K2 = K3 =3 K4 K5 = K6 =15 Then we find, from Eq. (70) that

-2Au(gll - 813) = —2Au(g22 - 323) is just the 'shielding'" factor, b, previously
obtained from the delta function in Eq. (58.2) and that this corresponds also
to —4Aug44 = —4Aug55 = -4Aug66 = b. Thus, for a spherical scatterer, the only
contributions to the renormalization of-the internal strain field are the
shielding factors a and b which arise from the delta function singularity in
Green's function. For an arbitrary ellipsoid, or for any more general shape,
we have now explicitly exhibited the volume ''polarization'" contributions to

this renormalization.

Ellipsoid of Revolution

For an ellipsoidal scatterer with a; = a, we then have Jll = J22,

K1 = K2 = 3K6, K4 = KS’ 811 = 8990 and 813 = 81 We also find
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2(3
(a /a ) -1
T =3 [ 2 sec ‘u
J mJ = a —aI(a/a) = u>1 €75.1)
) 7 %y L3 gy = —
2(33 = al) vu2 e
I(u) =
213 2
a /a =1
N (21723) [I(a jap) - } Bech 8 o ¢ (75.2)
3" (2. 2) Fain
- Nl | =
2 2 2/3.2
J..a, - J..a (a /a) a Y
BRSO 1 o) Mahe - Y 5.7 2 TR ‘
R, = K = o o [a3 + 2a] - 3ajl(a;/ay) (75.3)
3 1) 3 a
(""1/*‘3)2/3 r & 7 2
Kl = K2 = 3K6 =3 (Jll - K4) = 4 7 az 5 L233 - 5a1a3 + 3a I(a /a3)J
- Mla |
(754
i K, =d - 2K =-(f-—/—-—a3) 3aI( /a)-4a2+2— (75:5) ‘
3 33 4 3( 2 )2L T 3 gl : ;
a3 = al |
Then, from Eq. (70.2)
(31/&‘3)2/3 r 1
811 * 833 * “mpOamn (VTWdyy = SUMDK, i
(a3/al)2/3(x+u)
812 20 (+21) U - %) (76.2)
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2/3
R L B i R MIER (76.3)
813 T 823 2n(+20) 11 4

= iiliil[ifi (A=) 34, = 30K, | (76.4)
833 " T+ VWHMYag Bk | ’

2/3 4/3
- R S J.. + 30+u)K l +  } s J.. + 30K )
844 = 855 20020 |\a; L Y u 4 " \a, l“ 33 H 4;

(76.5)

2/3
(23721)" " ¢

866 = ZuCitzn) LM + 3OHDK (76.6)

Using these expressions reduces Eq. (73) to a simpler form, which may be
solved rather directly to give

o = 0o o

e 1l+yvy) - YcAK(El + Ez)

€ = - (7 2:1)
(1+a) (1 + v ) = 4BycAudK

where

I

B Qe
L 2
=3 3

2/3
(23/21)"" 73y, - 1/3
A+2u

+
Y = ZAu(2g13 = 83 = 312)
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(1+a) (E; + E;) - 4BALe® |
E. +E = (77.2)

3 ’ (1+a) (1 + Y+) - 4BycAuAK
o o
E1 = E2
B, = E (77.3)

These equations then provide the shielding factors for the extended Born
approximation. Given the incident strain field Egm(g) = Egp(r) + %»Smpeo(g)
we use Egs. (73.1) and (77.1)-(77.3) to provide an accurate first approxi-
mation to insert into Eqs. (25) and (26) for the scattered-wave amplitude
or Egqs. (26) and (38) for the differential scattering cross section, noting
however that the components of the displacement and the strain considered
here are specifically written with respect to a coordinate system
corresponding to the principal axes of the ellipsoid.

The important feature of this solution is that, to this level of
approximation, the general structure of the scattering vector Uj given in
Eqs. (42)-(45) above is unchanged. The density component, that involving
Ap/p is exactly as given in those equations. The dilatation and shear
components, involving fd and fU will still involve the Fourier transform
of the scattering volume and the shielding factors given in Eqs. (77.1)-
(77.3). In addition, the purely geometrical aspects of the scattering law,

(those due to the projection operators QuQs and éus - 2 Q of the incident

s
and scattered wave directions) will contribute no more than an "isotropic"
component and components proportional to the second order spherical
harmonics, and therefore no more than terms of the form a, S azc0529 or

sin28 in the scattering angle, 9. The amplitudes of the various components
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will, however, also depend on the orientation of the scattering ellipsoid
with respect to the plane of scattering.
The full implementation of this stage of the analysis has not been

completed.

F. Variational Theorems

Although integral equations are often much more difficult to solve than
the corresponding differential equations, they are often the more convenient
starting point for approximate solutions. This is particularly true when a
complete solution is not needed. In the scattering of elastic waves one has
an ideal example of this sort of approximation. We are not interested in a
complete solution of Eq. (3) or even a complete solution, for all r, of Eq.
(28). What we are interested in is the vector U(q) which is given in Eq. (26)
as an integral over the volume of the scatterer. This situation lends itself

ideally to attack by variational methods. To establish a methodology for such

an approach* we consider an unknown function u(x) as the solution of the

integral equation

u(x) = u°(§) +‘[H(x;x')u(x’)dx' (78)

and for which we want to evaluate the integral
J =ff(x)u)x)dx (79)

In order to define a variational approximation for J we introduce an

adjoint equation

*
A different approach to the formulation of a variation equation has been given
recently by G. S. Kino (Kino, 1976].

42




‘l‘ Rockwell Intemnational

Science Center

SC579.4FR

v(x) = f(x) +fH+(x;x')v(x')dx' (80)

where H+(x;x') is the adjoint operator, such that for any two arbitrary

sufficiently continuous functions, f(x) and g(x),

//‘g (x)H(x;%) f (X)dxdx = f/:f (x')H-’»(x';x)g(x)dxdx’i g

When H(x;x) involves only algebraic factors but no operators (such as 3/3x,
3/9%, etc.), H+(x';x) = H(x;X).

Now if we write

Q[u,v] = fuo(x):\;(x)dx +fii(x)f(x)dx

-fa(x)?;(x)dx + ff;(x)a(x;f)ﬁ(x’)dxdx' (81)

we have a variational formulation for the integral J. If the function u is equal

to u, the solution of Eq. (78), we find
Qlu,v] = fu(x)f(x)dx = J (82.1)

and if v is equal to v, the solution of Eq. (80), we find
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Qfu,v] = fuo(x)v(x)dx
= fu(x)v(x)dx -fﬁl(x;x')u(x')v(x)dx'dx
= ff(x)u(x)dx =J (82.2)

Thus, if u and v are approximations to the exact solutions of Eqs. (78) and
(80), Q[u,v] is a second order accurate approximation to J. If we set u = u + n,

Vv=v+E& we find
Qlutn,v+g] = J +ff£(x)H(x;x')n(x')dxdx'
-/E(x)n(x)dx (83)

so that the error is dependent on the product of the errors of the approximating
functions.
The variational expression Eq. (8l) may be easily improved for a scalar

function. Let us write u = ¢ ul, v = c2v where cl and c, are constants. Thus

it 1 2
if we can assume a shape for u and v we may use the variational process to
define the optimum amplitudes for those functions. Then, with an obvious short-

hand,

)
Q[clul,czvl] Cz(“ ’Vl) + cl(ul,f) - chZ(ul’vl)

+ ¢ ¢, (v Hu) (84)
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We now differentiate Q with respect to ¢y and <, and set these expressions to

zero.
0 = —-—
(u ,vl) = cl(ul,vl) cl(ulﬂvl)

and from this we find, [Goldstein and Cohen, 1962]

(u;,6) W,vp)
(ul,vl) - (leul)

J(ul,vl) = (85)

Equation (85) then represents a formulation of the variational problem which

is homogeneous of degree zero in the trial functions and hence independent of

-

their normalization.

To apply this formalism to elastic scattering we write Egqs. (28) and (26)

in terms of a nine-component vector, z = (um’sa’E EZ,E),m = 1.2.3, & = &4,5,6,

1’

1 .
with, of course, E3 = -El - Ez, and SB =3¢ + EB’ B =1,2,3. Equations (26)

and (28) are then converted into expressions of the form

Uj (@ = ffs(g;ﬂ,j)zs(g)dr (86.1)

and

z () = zo(x) +stp(£-£')zp(£')d£' (86.2)
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where
o o o
s m : 1+b i 1+b ’ 1+b 3 1+a ' i

The expressions for the matrix elements Hsp can be written out explicitly by
comparing the form of (86.2) with Egs. (55)-(59). Although this identification
is straightforward, the explicit expression for 9%X9 matrix is cumbersome and
need not be given here. The vector fs(_g;g_,j) may also be found from Eq. (26).

For fS we find

ig-r - .
it BT p A 2ilAu _ 2iAu 2iAu iAK
fs(};’g_,l) an (O ,0,0,0, - pw3 3 2 qzr pwz quoy ing 0w2 ql)
O
(87.1)
ig-r ; : : g
. L O Ap _ 2iAp _ 2iAu _ 2iAu _ 1Ak
fS(E,g_,Z) = LT (0, 0 ’0, pwz q3’0’ owz qlsos sz Gza pwz qz)
9]
(87.2)
ig-r :
) G Seew bp _ 218p . 2ihy 2iAu 2iAu _ 1Ak
fs(£’9.’3) == 4.“» (0)09 o 9 owz q2’ pwz ql’o’ owz q39 owz q3’ owz q3
(87.3)

The generalization of Eq. (85) is straightforward. One introduces two
trial functions (vectors), ﬁs(_g) and i’/s(g) from which one constructs two vectors

+
W and W with components
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¥ ffs(g;_q,j)us(;_)dg (88.1)
(not summed on s or p)
w; = fz:(_g)?rp(g)dg (88.2)
and a 9%9 matrix Wo with components
(o RS ~ ~ - - NG ] !
LA fvp(g)um(g)dgdpm ffvp(g)ﬂpm(g r)u (r)drdr . (88.3)

Then the variational expression for Uj becomes

U [5,7) = W
The variational solution for the scattering function Uj(g) is to be
found by introducing an appropriate set of free parameters into the trial
functions U and v and to determine the 'best' values of these free parameters
by requiring that Uj be stationary with respect to variation of those parameters.
In fact, since Eq. (89) is already based on an optimization procedure with
respect to a set of linear parameters, a significant improvement in the evalua-
tion of Uj comes from inserting an appropriate first approximation for u and v
into Eq. (89) and evaluating the expression with no additional free parameters.
Thus we can use ﬁs(g) = zg(g) and GS(E) = fs(g) as a first approximation. The
integrals involved are essentially just those required for the Born approxima-

tion (i.e., Fourier transforms with respect to the change in propagation vector).

If the wavelengths are not too short with respect to the dimensions of the
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scatterer the Green's function in Hpm(g_-z') in Eq. (89) may be expanded in
powers of the frequency squared. The required integrals may then be evaluated |
in a straightforward manner.
T, o = o s = 1 7 = +
vhen one uses us(g) zs(g) and VS(E) fs(g) one obtains the mS(E) wS(E)
which allows the "corrected" Born approximation for the differential scattering

cross section, Eq. (38.1), to be written in the form

2
: 9 |
Sp@ = a3 @Y w (@) (90.1) !
j s=1
and
5. @ =Y ¥ v @] - X ST w @D |
g R fon . $ 3
(90.2)

The lowest order variational calculation leads, for example, instead of

Eq. (90.1), to the expression

9 2
51@) - qink Z qsc v (gsc;j)fb (9L.1)
] s S
3 s=1
where
- S |
b = ;;l (wo )spwp (91.2)
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In the lowest order, long-wavelength, approximation to Ho’ the correction,
¢S, is exactly equivalent to the shielding factors calculated above in Eq. (77).

The accuracy of this variational formulation when applied to ellipsoidal
scatterers can be judged by comparing the variational calculation for a

spherical scatterer with the available exact solution.
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Fig. 1 Geometry for establisging a reciprocity theorem for the
scattering function US.




